日韩精品人妻一区二区中文,五月婷婷综合在线视频,A久久精品国产精品亚洲,亚州中文精品有码视频在线,精品1区2区3区产品乱码,色哟哟免费观看视频入口,婷婷射精AV这里只有精品,2024日产乱码国产,国产精品三级一区二区,艳妇乳肉豪妇荡乳AV

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車 1 種商品 - 共0元
當(dāng)前位置: 首頁(yè) > 行業(yè)資訊 > Dangerous pathogens use this sophisticated machinery to infe

Dangerous pathogens use this sophisticated machinery to infe

 

Dangerous pathogens use this sophisticated machinery to infect hosts

Date:May 17, 2019

Source:California Institute of Technology

Summary:A detailed new model of a bacterial secretion system provides directions for developing precisely targeted antibiotics.

Gastric cancer, Q fever, Legionnaires' disease, whooping cough -- though the infectious bacteria that cause these dangerous diseases are each different, they all utilize the same molecular machinery to infect human cells. Bacteria use this machinery, called a Type IV secretion system (T4SS), to inject toxic molecules into cells and also to spread genes for antibiotic resistance to fellow bacteria. Now, researchers at Caltech have revealed the 3D molecular architecture of the T4SS from the human pathogen Legionella pneumophila with unprecedented details. This could in the future enable the development of precisely targeted antibiotics for the aforementioned diseases.

The work was done in the laboratory of Grant Jensen, professor of biophysics and biology and Howard Hughes Medical Institute investigator, in collaboration with the laboratory of Joseph Vogel at the Washington University School of Medicine in St. Louis (WUSTL). A paper describing the research appeared online on April 22 in the journal Nature Microbiology.

There are nine different types of bacterial secretion systems, Type IV being the most elaborate and versatile. A T4SS can ferry a wide variety of toxic molecules -- up to 300 at once -- from a bacterium into its cellular victim, hijacking cellular functions and overwhelming the cell's defenses.

In 2017, Caltech postdoctoral scholar Debnath Ghosal and his collaborators used a technique called electron cryotomography to reveal, for the first time, the overall low-resolution architecture of the T4SS in Legionella, the bacteria that causes Legionnaires' disease, a severe and often lethal form of pneumonia.

Ghosal, along with Kwangcheol Jeong of WUSTL and their colleagues, have now made a detailed structural model of this dynamic multi-component machine. The team also made precise perturbations to the bacterium's genes to study mutant versions of the T4SS, revealing how this complex machine organizes and assembles.

The model revealed that the secretion system is composed of a distinct chamber and a long channel, like the chamber and barrel of a gun. Characterizing these and other components of the T4SS could enable the development of precisely targeted antibiotics.

Current antibiotics act broadly and wipe out bacteria throughout the body, including the beneficial microorganisms that live in our gut. In the future, antibiotics could be designed to block only the toxin delivery systems (such as the T4SS) of harmful pathogens, rendering the bacteria inert and harmless without perturbing the body's so-called "good bacteria."

The paper is titled "Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS." Ghosal and Jeong are co-first authors. In addition to Jensen and Vogel, other co-authors are former Caltech postdoctoral scholar Yi-Wei Chang, now of the University of Pennsylvania; Jacob Gyore of WUSTL; Lin Teng of the University of Florida; and Adam Gardner of the Scripps Research Institute. The work was funded by the National Institutes of Health.

Story Source:

Materials provided by California Institute of Technology. Original written by Lori Dajose. Note: Content may be edited for style and length.

 

朔州市| 元朗区| 山阴县| 海兴县| 陇川县| 邛崃市| 奉节县| 夏津县| 洛川县| 菏泽市| 广平县| 崇州市| 开鲁县| 天峨县| 江都市| 漳浦县| 田阳县| 汽车| 漯河市| 宣武区| 潞西市| 东平县| 武乡县| 达州市| 华坪县| 林甸县| 石城县| 余姚市| 堆龙德庆县| 蒲城县| 瑞丽市| 新闻| 珲春市| 邛崃市| 巴塘县| 诸城市| 新泰市| 柏乡县| 昌江| 九江县| 监利县|